Observation of conducting filament growth in nanoscale resistive memories.

نویسندگان

  • Yuchao Yang
  • Peng Gao
  • Siddharth Gaba
  • Ting Chang
  • Xiaoqing Pan
  • Wei Lu
چکیده

Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex-situ and in-situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of the insulating gap and conductive filament growth direction in resistive memories.

Filament growth is a key aspect in the operation of bipolar resistive random access memory (RRAM) devices, yet there are conflicting reports in the literature on the direction of growth of conductive filaments in valence change RRAM devices. We report here that an insulating gap between the filament and the semiconductor electrode can be detected by the metal-insulator-semiconductor bipolar tra...

متن کامل

Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches.

Resistive switching memories are nonvolatile memory cells based on nano-ionic redox processes and offer prospects for high scalability, ultrafast write and read access, and low power consumption. In two-terminal cation based devices a nanoscale filament is formed in a switching material by metal ion migration from the anode to the cathode. However, the filament growth and dissolution mechanisms...

متن کامل

Nonvolatile resistive switching in single crystalline ZnO nanowires.

We demonstrate nonvolatile resistive switching in single crystalline ZnO nanowires with high ON/OFF ratios and low threshold voltages. Unlike the mechanism of continuous metal filament formation along grain boundaries in polycrystalline films, the resistive switching in single crystalline ZnO nanowires is speculated to be induced by the formation of a metal island chain on the nanowire surface....

متن کامل

Enhanced resistive switching phenomena using low-positive-voltage format and self-compliance IrOx/GdOx/W cross-point memories

Enhanced resistive switching phenomena of IrOx/GdOx/W cross-point memory devices have been observed as compared to the via-hole devices. The as-deposited Gd2O3 films with a thickness of approximately 15 nm show polycrystalline that is observed using high-resolution transmission electron microscope. Via-hole memory device shows bipolar resistive switching phenomena with a large formation voltage...

متن کامل

Resistive switching in single epitaxial ZnO nanoislands.

Resistive memory is one of the most promising candidates for next-generation nonvolatile memory technology due to its variety of advantages, such as simple structure and low-power consumption. Bipolar resistive switching behavior was observed in epitaxial ZnO nanoislands with base diameters and heights ranging around 30 and 40 nm, respectively. All four different states (initial, electroformed,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012